If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2+10=0
a = -8; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-8)·10
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-8}=\frac{0-8\sqrt{5}}{-16} =-\frac{8\sqrt{5}}{-16} =-\frac{\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-8}=\frac{0+8\sqrt{5}}{-16} =\frac{8\sqrt{5}}{-16} =\frac{\sqrt{5}}{-2} $
| X3-x=60 | | 6x–5=10+3x. | | 5/11(x-4)=15 | | 1/9=27^2^x | | 3x^2-7=2x^2-5 | | 2(x-1)-11=69 | | a^2+22a-105=0 | | 3(v+4)=7v+24 | | 2a^2+22a-105=0 | | 3x^2+7=2x^2-5 | | 9(x-11)=135 | | x-(.40)=90 | | 5(x-6)-2=-4(-5x+5)-7x | | -5v+11=-3(v-1) | | –45=5t | | 12=-5x+2(x+3) | | 2p-p=4÷9.p=4/9 | | 16=2(y-8)-6y | | 11p^2-17p-20=p | | |3x+6|=5x | | 4(4^x)+8=33(2^x) | | 3n×2=12 | | X3-5=2x+10 | | 7(x-2)+2x=5(x+4)-38 | | x-5=6÷x | | 4(y–5)=16 | | 3x+2=5x-2x | | Z^3+125i=0 | | (2x-1)^2-(x-2)^2=0 | | (2x-1)^(2)-(x-2)^(2)=0 | | b/42=14/3 | | 3/5=y/125 |